

ArcadiaGrant, P.O.Chandanwari, Premnagar, Dehradun, Uttarakhand-

248007,INDIA

Detailed Course Structure & Syllabus of

Pre Ph.D. (Physics)

Course Work

(As per CBCS system) W.E.F Session 2022-23

Course Structure of the Pre-Ph.D (Physics) Course Work: Applicable for Batch: 2022-23

SCHEME OF EXAMINATION Ph.D(Physics) (Effective from Academic Year 2022-23)

Under Choice Based Credit System (CBCS)

	Course Structure of the Pre-Ph.D (Physics) Course Work: Applicable for Batch: 2022-23										
	Scheme of Pre-Ph.D. Course Work										
	Evaluation – Scheme										
S.No	Course	Subject	Credits	Р	Period Sessional Examina			ination			
	Code			L	Т	Р	CT- I	CT- II	Total	ESE	Sub. Total
Cours	Courses										
1.	RM-101	Research Methodology	4	4	0	0	20	20	40	60	100
2.	RM-102	Computer & Stats Application in Research	2	2	0	0	20	20	40	60	100
3.	RPE-103	Research & Publication Ethics	2	2	0	0	20	20	40	60	100
4.	DSE-104	Discipline Specific Electives	3	3	0	0	20	20	40	60	100
5.	RS-105	Seminar Presentation	2	0	0	4	20	20	40	60	100
		Total	13	11	0	4	100	100	200	300	500

List of Electives

S. No.	Course Code	Course Name
1	AR-104	Advanced Research
		&Instrumentation
		Techniques
2	PH-104 (i)	Spectroscopic Study,
		Thin Film
		Technology And
		Experimental
		Techniques
3	PH-104 (ii)	Solar Energy
		Fundamentals And
		Applications
4	PH-104 (iii)	Condensed Matter
		Physics & Material
		Science

(Established vide Uttaranchal University Act, 2012) (Uttarakhand Act No. 11 of 2013) Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand

SYLLABUS

of

Ph.D(Physics)

(Established vide Uttaranchal University Act, 2012) (Uttarakhand Act No. 11 of 2013)

Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand

Programme Name	Pre-Ph.D. Course Work	Programme Code	23-	
Course Code	RM-101	Credit	4	
Year/Sem	1/1	L-T-P	4-0-0	
Course Name	Research Methodol	logv		
Objectives of the Course:		~ 6)		
1. To Equip the Students with	the Concept and Metho	dology of Research.		
2. To provide knowledge abo	ut type of research, pre	eparation of reports an	nd thesis, designing of Research	
using Scientific Methods.		1 1		
UNIT I (Total Topics-7 and	Hrs-12)			
Introduction to Research: De	finition, Nature and sig	gnificance, Role and	Objectives; Types of Research:	
exploratory, descriptive, exp	perimental and diagnost	ic research, social an	d legal research and traditional,	
analytical, empirical & fun	damental research, Do	ctrinal and non-doctr	inal research methods; Various	
Research Designs; Scientifi	c Research Process: C	Overview, Problem id	entification and formulation of	
research statement.				
UNIT II(Total Topics-7 and	Hrs- 12)			
Data Collection: sources, pr	imary and secondary m	nethods, significance of	of Primary and Secondary Data,	
questionnaire Vs. schedules;	Data Processing: Edit	ing, Coding Organiza	ation and Presentation; Attitude	
Measurement and scaling:	Measurement Scales,	Sources of Errors in	n Measurement, Techniques of	
Developing Measurement To	ols, Classification and '	Testing (Reliability, V	verification and Validity) Scales,	
Designing Questionnaires and	Interviews.			
UNIT-III (Total Topics- 5 an	nd Hrs-10)			
Sampling, Sampling Methods	, Sampling Plans, Samp	ling Error, Sampling I	Distributions: Theory and Design	
of Sample Survey, Census V	s Sample Enumeration	ns, Objectives and Pr	rinciples of Sampling, Types of	
Sampling, Sampling and Nor	n-Sampling Errors, Con	ncept of Permutation,	Combination & Probability for	
research analysis.				
UNIT-IV (Total Topics- 5 and 1	Hrs- 10)			
Interpretations and Report W	riting: Meaning of Inte	rpretation, Techniques	of Interpretation, Precautions in	
Interpretation, Significance of	of Report Writing, Steps	s in Report Writing, L	ayout of Report and Precautions	
in Writing Research Reports. Limitations of RM: Ethics in Research, Philosophical Issues in Research.				
CO1. Acquire in-depth knowle	dge of various fundame	ntals, theories and prin	ciples related to the research and	
apply the acquired knowledge i	n carrying out research	studies in the area of in	nterest.	
CO2. Identify, formulate and critically investigate research problems by applying research-oriented				
knowledge and analyze relevant data to reach certain conclusions in the form of alternative solutions to these				
problems.				
CO3. Apply the acquired knowledge and skills to develop minds to think out of the box while carrying out				
research operations to conclude something.				
CO4. Apply parametric and n	on-parametric statistica	al tests to verify the c	developed hypothesis to suggest	
innovative solutions to the prob	olem being investigated.			

(Established vide Uttaranchal University Act, 2012) (Uttarakhand Act No. 11 of 2013) Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand

Reference Books

- 1. William G. Zikmund, "Business Research Methods", Orlando: Dryden Press.
- 2. C. William Emory and Cooper R. Donald, "Business Research Methods", Boston, Irwin.
- 3. Fred N Kerlinger, "Foundations of Behavioural Research", New Delhi: Surjeet Publications.
- 4. Naresh Malhotra, Marketing Research : An Applied Orientation, Pearson publication David Nachmias and
- ChavaNachmias, "Research Methods in the Social Sciences", New York: St.Marlia's Press.
- 5. Bhattacharya, D. K. (2004) Research Methodology, New Delhi, Excel Books.

(Established vide Uttaranchal University Act, 2012) (Uttarakhand Act No. 11 of 2013) Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand

Pre-Ph.D. Course	Programme Code	23-
Work		
RM-102	Credit	2
1/1	L-T-P	2-0-0
Computer & Stats Application in Research		
	Pre-Ph.D. Course Work RM-102 1/1 Computer & Stats A	Pre-Ph.D. Course WorkProgramme CodeRM-102Credit1/1L-T-PComputer & Stats Application in Research

Objectives of the Course:

- 1. To appraise computational skills for research application.
- 2. To assess statistical method for research analysis.

UNIT I

Characteristics of Computers, Evolution of computers, computer memory, computer generations, Basic computer organization; System software, Application software, introduction to operating system, single user, multi-user, multi-tasking single tasking, application of computer for business and research, MS-windows, Linux .Application of Internet in research : INFLIBNET, Use of Internet, sights (DOAJ), Use of E Journals, Use of E library, use of EBSCO HOST online database of Academic Libraries. Subject/field specific tools on www.freeware.com

UNIT II

Computer Application in Research, Basic concept of Computer, Use of Internet for Research Purpose: E-mail, WWW, Web browsing, technical skills, drawing inferences from data, Research publishing tools-MS Word, Adobe acrobat, Graphics tool-MS Excel, Presentation tool-MS Power, Data Analysis Software and Analysis Techniques point. Creating presentation and adding effects, Introduction to Data analysis software-SPSS: Definition, objectives and features, data analysis using SPSS.

UNIT-III

Statistical methods for research application in analysis of data, Measurement in Research , data interpretation, Measures of Central Tendency, Measures of Dispersion, Measures of Asymmetry (Skewness), std deviation, Measures of Relationship, Simple Regression Analysis, Correlation and Regression, Partial Correlation.

UNIT-IV

Statistical Tools-Hypothesis and Hypothesis Testing: Parametric & Non-Parametric Tests, Important Parametric Tests, Hypothesis Testing of Correlation Coefficients, U Test, Chi Square Test, ,T-Test.Analysis of Variance (ANOVA), The Basic Principle of ANOVA, ANOVA Technique, Setting up Analysis of Variance Table, Short-cut Method for One-way ANOVA, Coding Method, Two-way ANOVA.

Course Outcomes:

CO1. Acquire knowledge of concept of computer with application in Research.

CO2. Apply acquired knowledge of computer for presentation skills.

CO3. Acquire knowledge of statistical methods for Research.

CO4. Apply acquired knowledge to describe the inductive nature of quantitative data analysis.

(Established vide Uttaranchal University Act, 2012) (Uttarakhand Act No. 11 of 2013) Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand

Reference Books

1. C. R. Kothari, "Research Methodology: Methods and techniques", New Delhi: Vishwa Prakashan.

2. Brymann, Alan and Carmer, D. (1995) Qualitative data analysis for social scientist, New York, Routledge Publication.

3.Jain, Satish: "Introduction to Computer Science and basic Programming." BPB Publications, New Delhi, 1990. • Rajaraman, V., "Fundamental of Computers", Prentice Hall of India, New Delhi, 1996.

(Established vide Uttaranchal University Act, 2012) (Uttarakhand Act No. 11 of 2013) Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand

Programme Name	Pre-Ph.D. Course Work	Programme Code	23-		
Course Code	RPE-103	Credit	2		
Year/Sem	1/1	L-T-P	2-0-0		
Course Name	Name Research & Publication Ethics				
Objectives of the Course: Its objectives to provide know	vledge about ethics and c	ode of research public	ation with concept of plagiarism.		
UNIT I (Total Topics- 2 and 1. Introduction to philosophy)	Hrs-8)	one concept humahas			
 2. Ethics: definition, moral phil 	ilosophy, nature of mora	l judgments and reaction	ons		
UNIT II(Total Topics- 5 and	Hrs- 5)				
1. Ethics with respect to science	ce and research				
2. Intellectual honesty and rese	earch integrity				
3. Scientific misconducts: Fals	sification, Fabrication, ar	nd Plagiarism (FFP)			
4. Redundant publications: du	plicate and overlapping p	publications, salami sli	cing		
5. Selective reporting and mist	representation of data				
UNIT- III (Total Topics-7 an	d Hrs-7)				
1. Publication ethics: definitio	n, introduction and impo	ortance			
2. Best practices/ standards set	tting initiatives and guide	elines: COPE, WAME	,etc.		
3. Conflicts of interest					
4. Publication misconduct: def	finition, concept, problem	ns that lead to unethica	ll behaviour and vice versa, types		
5. Violation of publication eth	ics, authorship and contr	ibutorship			
6. Identification of publication	n misconduct, complaints	and appeals			
7. Predatory publishers and jo	urnals				
UNIT- IV (Total Topics-4and	d Hrs-4)				
Practice					
Open Access Publishing					
1. Open access publications ar	iu initiatives	ar convright & salf are	hiving policies		
2. STERT A ROMEO Unitie to 3. Software tool to identify pre	edatory publications deve	aloped by SPPU	inving policies		
A Journal finder/ Journal suggestion tools viz. JANE Elsevier Journal finder. Springer Journal Suggester, etc.					
CO1 Recognize the basics of philosophy of science k othics research integrity publication othics and					
theories of research ethics					
CO2. Familiarize with imp	CO2. Familiarize with important issues in research ethics, research integrity, scientific misconduct and				
misinterpretation of data.	misinterpretation of data.				
CO3. Analyze the best pract	tices for publications, pu	blication ethics and id	entify the predatory publishers &		
journals.		0			
CO4. Demonstrate &use pl	lagiarism software tools	s, open-source softwa	are tools, citation databases and		

(Established vide Uttaranchal University Act, 2012) (Uttarakhand Act No. 11 of 2013)

Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand

research metrics.

CO5. Publish credible & scholarly publications in reputed peer-reviewed journals.

References-

Research and Publication Ethics, Dr Sumanta Dutta, Bharti Publications,2021 Research and Publication Ethics, Dr Santosh kumar Yadav, Anne Publications,2020

(Established vide Uttaranchal University Act, 2012) (Uttarakhand Act No. 11 of 2013) Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand

Programme Name	Pre-Ph.D. Course	Programme Code	23-	
	Work			
Course Code	RS- 105	Credit	2	
Year/Sem	1/1	L-T-P	0-0-4	
Course Name Seminar Presentation				

Objectives of the Course:

Main objective of this course is to develop presentation skills in the scholars and knowledge about review of literature so that they can review properly for utilisation in their research work.

Seminar Presentation-Candidate/Research Scholar has to go through the review of literature in the concerned field of research. Review of literature guidelines will be given by the concerned faculty/Dean of Department/School/College. Research Scholar has to prepare presentation on review of literature in the concerned field/ topic assigned by the department (DRC) periodically during course work. There will be minimum 3 presentations of review of literature during pre-Ph.D. course work.

- First presentation will be required in DRC/FRC for review of literature with concerned Department focus on area of research. It will be evaluated and assessment sheet will be sent from Department to Dean Research & Studies office.
- Similarly second presentation will be required by research scholar with extension of first presentation and more number of references would be added.

Internal & end term examination marks will be as per scheme. Each presentation is to be assessed by the department as per instructions from Dean-Research & Studies.

Final presentation would be required at the time of end term/sem. examination on proposed synopsis. General guidelines would be issued by Dean-Research for seminar presentation.

Course outcomes

CO1. Research Scholar would be able to develop & explore the review of literature in concerned area.

CO2. Analyze review of literature critically for finding the research gap.

CO3. Apply acquired knowledge in making systematic seminar presentations.

CO4. Apply acquired knowledge for improving development of all-round research.

(Established vide Uttaranchal University Act, 2012) (Uttarakhand Act No. 11 of 2013) Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand

Programme Name	Pre-Ph.D. Course	Programme Code	23-	
	Work			
Course Code	AR-104	Credit	3	
Year/Sem	1/1	L-T-P	3-0-0	
Course Name	ourse Name Advanced Research &Instrumentation Techniques			

Objectives of the Course:

- 1. To learn & apply concept of Thermogravimetric techniques in research.
- 2. To provide knowledge about spectroscopic techniques for research.

UNIT I (Total Topics-12 and Hrs-12)

UV-Visible spectroscopy

Basic principle, Various electronic transitions Beer-Lambert law, effect of solvent on electronic transitions, molar extinction coefficient, concept of chromospheres and auxochromes, bathochromic, hyperchromic and hypochromic, UV spectra of conjugated enes and enones, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Woodward-Fiesher rules for conjugate dienes and carbonyl compounds.

Infrared spectroscopy

Infra-red spectroscopy: Basic principle, Instrumentation Selection rules, fundamental modes of vibration, overtones, combination bands, Fermi resonance, Factors affecting IR spectra. Effect of hydrogen bonding, solvent effect on IR of gaseous, solids and polymeric Interactions with molecules: absorption and scattering. Means of excitation (light sources), detection of the signal (heat differential detection), interpretation of spectrum (qualitative, mixtures, resolution), advantages of Fourier Transform (FTIR).Interpretation of IR spectra of aliphatic, aromatic hydrocarbons, amines, amides, carbonyl compounds etc

UNIT-II(Total Topics-12 and Hrs-12)

NMR spectroscopy

Principle, Instrumentation, Factors affecting chemical shift, Uses of TMS equivalent and non-equivalent protons, chemical shifts, factors affecting chemical shifts, shielding of magnetic nuclei, deshielding, anisotropic effects in alkene, alkyne, aldehydes and aromatics, spin-spin coupling, coupling constant, chemical exchange,Simple applications, Interpretation of NMR spectra of aliphatic, aromatic hydrocarbons, carbonyl compounds etc.

Thermal methods of analysis:

Thermal methods: Principle & application of Thermogravimatric analysis; TGA, DTA & DSG, DSC : Principle instrumentation and applications.

(Established vide Uttaranchal University Act, 2012) (Uttarakhand Act No. 11 of 2013) Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand

UNIT-III (Total Topics- 12 and Hrs- 12)

Microscopic Techniques: Preparation of Thin-films, Physical vapor deposition, Evaporation Techniques-Sputtering (RF & DC), Spin Coating, Pulsed Laser deposition, Working Principle of X-ray Diffractometer, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Scanning tunneling microscopy (STM), Introduction & application of Bio analytical techniques

UNIT-IV (Total Topics-12 and Hrs-12)

Physical instrumentation techniques: Physical Properties: Introduction, & applications of different physical Characteristics: Viscosity, optical activity & conductivity, Instrumentation: Viscometer, pH meter, Refractometer, Polarimeter.

CO-1: Inculcate knowledge about advanced techniques for physical parameters of materials. CO-2: Apprcise UV visible&Spectroscopic techniques.

CO-3: Learn interpretation of data used in spectroscopy analysis.

CO-4: Learn principle and method of microscopic & thermogravimatric techniques for characterisation of material for research.

Reference Books:

- 1. Spectroscopy of Organic Compounds, New Age International Publishers; PS Kalsi
- 2. Spectrometric Identification of Organic Compounds, John Wiley; Silverstein, Robert M.; Webster, Francis X.; Kiemle
- 3. Practical NMR Spectroscopy, ML Martin, JJ Delpeach and GJ Martin, Heyden.
- 4. Fundamentals of Molecular Spectroscopy Colin N. Banwell and Elaine M. Mc Cash Tata McGraw Hill.
- 5. Introduction to NMR Spectroscopy: RJ Abraham, J Fischer and P Loftus, Wiley.
- 6. Spectroscopic Method in Organic Chemistry: DH Williams, I Fleming, Tata MacGraw Hill.
- 7. Instrumental Method of Analysis: Seventh Edition, Willard Merritt, Dean, Settle. CBS

(Established vide Uttaranchal University Act, 2012) (Uttarakhand Act No. 11 of 2013)

Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand

Programme Name	Pre-Ph.D. Course	Programme Code	23-
	Work		
Course Code	PH-104 (i)	Credit	3
Year/Sem	1/1	L-T-P	3-0-0
Course Name	Spectroscopic Study, 7	Thin Film Technology	And Experimental
	Techniques		

Objectives of the Course:

- **1.** To understand the fundamentals of molecular fluorescence, UV-visible and visible spectroscopy.
- 2. To illustrate the characteristics of fluorescence emission spectra.
- **3.** To understand different techniques of thin film deposition and working principle of instruments used in the analysis of experimental results.

UNIT I (Total Topics - 07 and Hrs - 15)

Molecular Fluorescence: luminescence, fluorescence and phosphorescence, Fluorescence and other de-excitation processes of excited molecules, Fluorescent probes, Ultimate spatial and temporal resolution: femtoseconds, femtoliters, femtomoles and single-molecule detection.

UNIT II (Total Topics - 20 and Hrs - 20)

UV-Visible and Visible Spectroscopy: Introduction, The absorption laws, Measurement of absorption intensity, Instrumentation, Formation of absorption bands, theory of electronic spectroscopy, Types of electronic transitions in polyatomic molecules, Probability of transitions, Oscillator strength, Selection rules, The Franck–Condon principle, the chromophore concept, absorption and intensity shifts, types of absorption bands, solvent effect, effect of temperature and solvent on the fineness of absorption band, fluorescence and phosphorescence, applications of ultraviolet spectroscopy, important features in electronic spectroscopy, important terms and definitions in ultraviolet spectroscopy.

UNIT III (Total Topics - 23 and Hrs - 20)

Characteristics Of Fluorescence Emission: Radiative and non-radiative transitions between electronic states, Internal conversion, Fluorescence, Intersystem crossing, and subsequent processes, Intersystem crossing, Phosphorescence versus non-radiative de-excitation, Delayed fluorescence, Triplet–triplet transitions, Lifetimes and quantum yields, Excited-state lifetimes, Quantum yields, Effect of temperature, Emission and excitation spectra, Steady-state fluorescence intensity, Emission spectra, Excitation spectra, Stokes shift, Effects of molecular structure on fluorescence, Extent of p-electron system. Nature of the lowest-lying transition, Environmental factors affecting fluorescence, Homogeneous and inhomogeneous broadening. Red-edge effects.

(Established vide Uttaranchal University Act, 2012) (Uttarakhand Act No. 11 of 2013) Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand

UNIT IV (Total Topics - 21 and Hrs - 20)

Thin Film Technology and Experimental Techniques: Preparation of Thin-films, Physical vapor deposition, Evaporation Techniques-Sputtering (RF & DC), Spin Coating, Pulsed Laser deposition, Liquid Phase Epitaxy, Vapour Phase Epitaxy, Molecular Beam Epitaxy, Film growth and measurement of thickness, Thermodynamics and Kinetics of thin-film formation, Deposition parameters, and grain size, structure of thin films, Ellipsometry, and interferometers, Measurement of the rate of deposition using rate meter, cleaning of the substrate. Working Principle of X-ray Diffractometer, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Scanning tunneling microscopy (STM), Fourier Transform Infrared Spectroscopy (FTIR), IR and UV-Visible Spectroscopy.

Course Outcomes (CO):

- 1. Illustrate the difference between luminescence, fluorescence and phosphorescence along with the concept of probe and resolution.
- 2. Illustrate the fundamentals of UV-Visible and Visible Spectroscopy along with their important applications or utilizations.
- 3. Demonstrate and analyse the significant characteristics of fluorescence emission along with quantitative analysis of important parameters.
- 4. Demonstrate and incorporate the acquired expertise of thin film deposition and experimental techniques for the applications in, real-world situations and problems.

References:

- **1.** Sayer M. and Mansingh Abhai, Measurement, Instrumentation Experiment design in Physics and Engineering, Prentice Hall India, 2000.
- 2. Maissel Leon I. and Glang Reinhard, Handbook of Thin Film Technology, McGraw-Hill Handbooks
- 3. Valeur Bernard, Molecular Fluorescence: Principles and Applications, Wiley, 2001.
- **4.** Goswami A., Thin Film Fundamentals, New Age international (P) Ltd. Publishers, New Delhi, 1996.
- 5. Feldman L. C. and Mayer J.W., Fundamentals of surface and Thin Films Analysis, North Holland, Amsterdam, 1986.
- 6. Banwell Colin N and Elaine M, Cash Mc Fundamental of molecular spectroscopy, McGraw-Hill Publication.
- 7. Sharma Y R, Elementary organic spectroscopy; Principles and chemical applications, S Chand Pub.

(Established vide Uttaranchal University Act, 2012) (Uttarakhand Act No. 11 of 2013)

Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand

Programme Name	Pre-Ph.D. Course	Programme Code	23-
	Work		
Course Code	PH-104 (ii)	Credit	3
Year/Sem	1/1	L-T-P	3-0-0
Course Name Solar Energy Fundamentals And Applications			

Objectives of the Course:

- **1.** To understand the fundamentals of solar radiation concepts along with its analytical analysis and measurement.
- 2. To illustrate the conversion of solar radiation by means of solar energy collectors.
- **3.** To understand the mechanism of conversion of solar energy by means of different solar energy systems along with the comprehensive study of solar crop drying.

UNIT I (Total Topics - 21 and Hrs - 15)

Solar Radiation and its Measurement: Introduction, Solar spectrum, solar radiation; Terrestrial and Extraterrestrial Regions, Solar Time, Instruments; Pyrheliometer, Pyranometer, Sunshine recorder, Sun-earth angles, solar radiation on an inclined surface, monthly average daily radiation on sloped surfaces, estimation of average solar radiation, distribution of clear and cloudy days and hours, estimation of beam and diffuse components of hourly radiation, estimation of beam and diffuse components of the monthly average of daily total radiation on a horizontal surface, estimation of the monthly average of daily diffuse radiation on a horizontal surface, estimation from daily data.

UNIT II (Total Topics - 17 and Hrs - 15)

Heat Transfer Concepts: Introduction, conduction; temperature field, Fourier's law, thermal conductivity, differential equation of conduction, solution of heat conduction in a medium, Boundary conditions, overall heat transfer, Convection, Radiation; radiation involving real surfaces, Kirchoff's law, laws of thermal radiation, radiative heat transfer coefficient, radiation shape factor, heat and mass transfer.

UNIT III (Total Topics - 12 and Hrs - 15)

Solar Energy Collectors: Introduction, Physical principles of the conversion of solar radiation into heat, flat plate collectors, Flat Plate Collectors; a typical liquid collector, Heat transport system, Typical air collectors or solar air heaters; non porous absorber plate type collectors, collectors with porous absorbers, applications of solar air heaters, advantages of flat plate collectors, Transmissivity of cover system, Energy balance equation and collector efficiency.

UNIT IV (Total Topics - 14 and Hrs - 15)

Application of Solar Energy: Introduction, solar water heating, Space heating, space cooling, solar thermal electric conversion, solar electric power generation; solar photo-voltaic, agriculture and industrial process heat, solar distillation, solar pumping, solar furnace, solar cooking, solar green houses and solar crop drying.

(Established vide Uttaranchal University Act, 2012) (Uttarakhand Act No. 11 of 2013) Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand

UNIT V (Total Topics - 15 and Hrs - 15)

Solar Crop Drying: Introduction, Working principle; open sun drying, direct solar drying, indirect solar drying, Thermal modelling of open sun drying, computational procedure for convective heat transfer, prediction of crop temperature and moisture evaporation, analysis for steady state condition, experimental setup for open sun drying, methodology and input parameters for computation, thermal analysis of cabinet dryer, energy balance for reverse absorber cabinet dryer; thin layer drying, deep bed grain drying, Energy balance for indirect solar drying system; solar air heater, drying chamber.

Course Outcomes (CO):

- **1.** Demonstrate and analyse solar radiation intensity along with the operating skill of measuring instruments.
- **2.** Illustrate and apply the fundamentals of heat transfer concept in the field of solar energy applications.
- **3.** Appraise the knowledge of design, working principle and evaluation of efficiency of solar collector to design and its best utilization.
- **4.** Illustrate the mechanism, importance and applications of renewable energy systems in compare to conventional energy systems.
- **5.** Incorporate the fundamental and analysis/operational techniques of solar crop dryers in practical, real-world situations and problems.

References:

- 1. Tiwari, G. N., Solar Energy fundamental, Design, Modelling and application, Narosa Publishing house, New Delhi, 2002.
- **2.** Tiwari G N and Sangeeta Suneja, Solar Thermal Engineering System, Narosa Publishing House, New Delhi, 1997.
- 3. Rai G D, Non-Conventional sources of Energy, Khanna Publishers, New Delhi, 2000.
- **4.** ASHRAE, Handbook of fundamentals American society of heating refrigerating and air conditioning Engineers, New York, 1967, 1974, 1977.
- 5. Duffie J A and Beckman W A , Solar Engineering of thermal processes , John Wiley and Sons, New York, 1991
- **6.** Garg H P, Treatise on solar Energy, Fundamentals of solar energy, Vol.- 1, John Wiley and Sons, New York, 1982.

(Established vide Uttaranchal University Act, 2012) (Uttarakhand Act No. 11 of 2013)

Due cuerto Alterra	UNIVERSITY Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand				
Programme Name	Work	Programme Code	23-		
Course Code	PH-104(iii)	Credit	3		
Year/Sem	1/1	L-T-P	3-0-0		
Course Name	Condensed Matter Ph	ysics & Material Scien	nce		
Objectives of the Cou	rse:				
1. To understand the	fundamentals of crystal	structure and concepts of	concern with semiconductor		
and superconductor	rs.				
2. To understand the c	concepts of thermodynar	nics and interpretation o	of statistical methods.		
3. To understand the p	perception of field theory				
4. To understand the r	nodels and methods for	polymeric systems.			
UNITS I (Total Topic	s - 11 and Hrs - 20)				
Basic Structures: H	Bravais lattices. Recipro	ocal lattice. Diffraction	and the structure factor.		
Phonons, lattice specif	ic heat. Free electron th	eory and electronic spe	ecific heat. Drude model of		
electrical and thermal of	conductivity. Electron m	otion in a periodic pote	ntial, band theory of solids:		
metals, insulators and s	semiconductors. Superco	nductivity.			
UNITS II (Total Topi	cs - 05 and Hrs - 20)		• • • • • • • •		
Thermodynamics and	d Statistical Physics:	Basics of thermodyna	imics, review of statistical		
methods, spatial corr	elations in classical s	systems, ordered syste	ems, symmetry and order		
parameters, and function	onal derivatives.				
UNITS III (Total Top	1 ord = 13 and Hrs = 20)	11714			
Mean-Field Theory:	The ising and n-vector	model, Landau theory	, extension to first - order		
transitions, application	is to magnetism, liquid	crystals and multiferro	ics, variational mean-field		
theory, density function	nal theory and its application	ations to ordered system	is Breakdown to mean-field		
theory, mean-field tra	nsitions revisited, self-	Consistent field approxi	imation, critical exponents,		
universality and scaling	g, Kadnoff construction,	Momentum shell renorm	nalization group		
UNITS IV (Total Top	1CS - US and $HrS - 15$				
Models and metho	as for Polymeric	Systems: Continuous	models, lattice models,		
Commanization group	approach and its applica	tion to polymeric system	115		
1 Illustrata latticas	J):	mora concenta relate	d to comison ductors and		
1. Infustrate fattices	, phonons and many	more concepts relate	ed to semiconductors and		
2 Illustrate the bas	superconductors.				
2. Inustrate the basic concepts of thermodynamics and statistical parameters and functional derivatives.					
ucilyalives. 3 Illustrate and interpret different concepts and parameters involving in filed theory					
 Industrate and interpret different concepts and parameters involving in filed theory. Illustrate different models, renormalization group approach and its applications to polymeric. 					
systems					
Boforoncos:					
1 Chaikin PM and	Lubensky TC Princin	le of Condensed Matte	r Physics Cam Univ Press		
1008	Luoensky 1.C., 11merp	ie of condensed water	r r nysies, cam.omv.r ress,		
2 Hansen IP and M	Donell I.R. Theory of 9	Simple Liquids Elsevier	r Inc. 2006		
3 de Gennes P.G. Scaling Concept in Polymer Physics Cornell Univ Press 1979					
4. Cloizeanx ID and Jannink G Polymer in Solutions: Their modelling and structure Oxford					
		· Solutions, Then mout	ming and substate, Ontola		
Univ Press 1990			-		

(Established vide Uttaranchal University Act, 2012) (Uttarakhand Act No. 11 of 2013) Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand

- 5. Singh S. Liquid Crystals: Fundamentals, World Scientific, 2002.
- 6. Mahan G.D., Many, Particle Physics, Springer, 1990.
- **7.** Goldennfeld Nigel, Lectures on Phase Transitions and the renormalization group, Addison-Wisley, 1992.
- 8. Puri S. and Wadhawan V.K. Kinetics of Phase Transitions, World Scientific, 2010.